Metal Oxide Semiconductor - definizione. Che cos'è Metal Oxide Semiconductor
Diclib.com
Dizionario ChatGPT
Inserisci una parola o una frase in qualsiasi lingua 👆
Lingua:

Traduzione e analisi delle parole tramite l'intelligenza artificiale ChatGPT

In questa pagina puoi ottenere un'analisi dettagliata di una parola o frase, prodotta utilizzando la migliore tecnologia di intelligenza artificiale fino ad oggi:

  • come viene usata la parola
  • frequenza di utilizzo
  • è usato più spesso nel discorso orale o scritto
  • opzioni di traduzione delle parole
  • esempi di utilizzo (varie frasi con traduzione)
  • etimologia

Cosa (chi) è Metal Oxide Semiconductor - definizione

TYPE OF FIELD-EFFECT TRANSISTOR
Mos technology; Metal oxide semiconductor field-effect transistor; MOSFETs; Metal-Oxide-Semiconductor Field-Effect Transistor; Double Diffused MOS; IGFET; Mosfet; Metal Oxide Semiconductor; Mosfets; DMOS; Mofset; Metal–oxide–semiconductor structure; Dmos; MOS FET; CMOSFET; Metal-Oxide-Semiconductor structure; MISFET; Metal oxide semiconductor; Metal–Oxide–Semiconductor structure; N-FET; Metal oxide semiconductor field effect transistor; Metal-oxide-semiconductor field-effect transistor; Metal-oxide-semiconductor structure; Metal–oxide–semiconductor field-effect transistor; Metal–Oxide–Semiconductor Field-Effect Transistor; Metal–Oxide–Semiconductor field-effect transistor; MOS capacitor; Metal-oxide-semiconductor; MOSFET heatsink; MOSFET heat sink; Metal-Insulator-Semiconductor Field-Effect Transistor; Metal–oxide–semiconductor; Igfet; Metal-oxide-silicon; Insulated-gate Field-effect Transistor; Insulated gate Field-effect Transistor; Insulated gate Field-Effect transistor; Insulated Gate Field-effect Transistor; Metal Oxide Semiconductor Field Effect Transistor; MOS-FET; Insulated gate field-effect transistor; Dual-gate FET; Dual-gate field-effect transistor; Metal-Oxide-Semiconductor field-effect transistor; Metal-oxide semiconductor; NFET; MOSFET scaling; NMOS transistor; PMOS transistor; PMOS FET; NMOS FET; MOS transistor; MOS technology; Metal–oxide–silicon
  • MOSFET showing gate (G), body (B), source (S) and drain (D) terminals. The gate is separated from the body by an insulating layer (pink).

Metal Oxide Semiconductor         
<electronics> (MOS) The three materials used to form a gate in the most common kind of Field Effect Transistor - a MOSFET. [Other MOS devices?] (1996-05-27)
Complementary Metal Oxide Semiconductor         
  • drain and source]] respectively.
  • [[NAND gate]] in CMOS logic
  • The [[physical layout]] of a NAND circuit. The larger regions of N-type diffusion and P-type diffusion are part of the transistors. The two smaller regions on the left are taps to prevent [[latchup]].
  • Simplified process of fabrication of a CMOS inverter on p-type substrate in semiconductor microfabrication. In step 1, [[silicon dioxide]] layers are formed initially through [[thermal oxidation]] Note: Gate, source and drain contacts are not normally in the same plane in real devices, and the diagram is not to scale.
TECHNOLOGY FOR CONSTRUCTING INTEGRATED CIRCUITS
Complementary Metal Oxide Semiconductor; Complimentary Metal Oxide Semiconductor; Complementary metal-oxide-semiconductor; Complementary metal-oxide semiconductor; CMOS based; Cmos; CMOS transistor; COS/MOS; Complementary metal–oxide–semiconductor; Complementary metal–oxide semiconductor; Complementary symmetry metal oxide semiconductor; Complementary-symmetry circuit; Complementary metal oxide semiconductor; Complementary-symmetry; CMOS logic; C-MOS; Complementary MOS; Complementary Symmetry Metal-Oxide Semiconductor; Complementary Metal–Oxide–Semiconductor; Complementary Metal-Oxide-Semiconductor
<integrated circuit> (CMOS) A semiconductor fabrication technology using a combination of n- and p-doped semiconductor material to achieve low power dissipation. Any path through a gate through which current can flow includes both n and p type transistors. Only one type is turned on in any stable state so there is no static power dissipation and current only flows when a gate switches in order to charge the parasitic capacitance. (1999-06-04)
Metal Oxide Semiconductor Field Effect Transistor         
<electronics> (MOSFET) A Field Effect Transistor in which the conducting channel is insulated from the gate terminal by a layer of oxide. Therefore it does not conduct even if a reverse voltage is applied to the gate. (1997-02-24)

Wikipedia

MOSFET

The metal–oxide–semiconductor field-effect transistor (MOSFET, MOS-FET, or MOS FET) is a type of field-effect transistor (FET), most commonly fabricated by the controlled oxidation of silicon. It has an insulated gate, the voltage of which determines the conductivity of the device. This ability to change conductivity with the amount of applied voltage can be used for amplifying or switching electronic signals. A metal-insulator-semiconductor field-effect transistor (MISFET) is a term almost synonymous with MOSFET. Another synonym is IGFET for insulated-gate field-effect transistor.

The basic principle of the field-effect transistor was first patented by Julius Edgar Lilienfeld in 1925.

The main advantage of a MOSFET is that it requires almost no input current to control the load current, when compared with bipolar transistors (bipolar junction transistors/BJTs). In an enhancement mode MOSFET, voltage applied to the gate terminal increases the conductivity of the device. In depletion mode transistors, voltage applied at the gate reduces the conductivity.

The "metal" in the name MOSFET is sometimes a misnomer, because the gate material can be a layer of polysilicon (polycrystalline silicon). Similarly, "oxide" in the name can also be a misnomer, as different dielectric materials are used with the aim of obtaining strong channels with smaller applied voltages.

The MOSFET is by far the most common transistor in digital circuits, as billions may be included in a memory chip or microprocessor. Since MOSFETs can be made with either p-type or n-type semiconductors, complementary pairs of MOS transistors can be used to make switching circuits with very low power consumption, in the form of CMOS logic.

Esempi dal corpus di testo per Metal Oxide Semiconductor
1. There are a number of adequate ones on the market at prices lower than $50, but many rely on low–grade sensors using C.M.O.S. technology (for complementary metal oxide semiconductor) that offer lower resolutions and send fewer frames a second.